Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 19 - DC Circuits - Problems - Page 553: 28

Answer

a) $I_1=0.022A$ right $I_2=0.124A$ left $I_3=0.102A$ up b) $I_1=0.023A$ right $I_2=0.124A$ left $I_3=0.101A$ up

Work Step by Step

a) $R_{eq}=R_3+\frac{1}{\frac{1}{R_1}+\frac{1}{R_2}}=53.3\Omega$ Lets assume the direction of the current is right for $R_1$, left for $R_2$, and up for $R_3$. $I_1-I_2+I_3=0$ $I_1=I_2-I_3$ $I_1R_1+I_2R_2=9.0V$ $I_2R_2+I_3R_3=12.0V$ $I_3R_3-I_1R_1=3.0V$ $I_3R_3-(I_2-I_3)R_1=3.0V$ $I_3(R_3+R_1)-I_2R_1=3.0V$ $I_3=\frac{3.0V+I_2R_1}{R_3+R_1}$ $(I_2-I_3)R_1+I_2R_2=9.0V$ $I_2(R_1+R_2)-\frac{3.0V+I_2R_1}{R_3+R_1}R_1=9.0V$ $I_2(93\Omega)-\frac{3.0V+(25\Omega)I_2}{60\Omega}(25\Omega)=9.0V$ $I_2(4080\Omega)-75.0V+(875\Omega)I_2=540V$ $I_2=0.124A$ $I_3=\frac{3.0V+(0.124A)(25\Omega)}{60\Omega}=0.102A$ $I_1=0.124A-0.102A=0.0224A$ $I_1=0.0224A$ right $I_2=0.124A$ left $I_3=0.102A$ up b) $I_1=I_2-I_3$ $I_1(R_1+r)+I_2R_2=9.0V$ $(I_2-I_3)(R_1+r)+I_2R_2=9.0V$ $I_2R_1+I_2r-I_3R_1-I_3r+I_2R_2=9.0V$ $I_3=\frac{I_2(R_1+r+R_2)-9.0V}{R_1+r}$ $I_3=\frac{I_2(94.0\Omega)-9.0V}{26.0\Omega}$ $I_3=3.62I_2-0.346A$ $I_2R_2+(3.62I_2-0.346A)(R_3+r)=12.0V$ $I_2(68\Omega)+(3.62I_2-0.346A)(36\Omega)=12.0V$ $I_2=\frac{24.5V}{198\Omega}=0.124A$ $I_3=3.62(0.124A)-0.346A=0.101A$ $I_1=I_2-I_3=0.124A-0.101A=0.023A$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.