Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 19 - DC Circuits - Problems - Page 553: 23

Answer

$V_{max}=54.7V$

Work Step by Step

$R_{eq}=\frac{1}{\frac{1}{2.5k\Omega}+\frac{1}{3.7k\Omega}}+1.4k\Omega=2.89k\Omega$ $P=I^2R$ $I_{max}=\sqrt{\frac{P_{max}}{R}}$ $I_{max}=I_1=\sqrt{\frac{0.5W}{1.4k\Omega}}=0.0189A$ $I_{max}=I_2+I_3$ $I_2=I_{max}-I_3$ $V_2=V_3$ $(I_{max}-I_3)R_2=I_3R_3$ $I_3=\frac{I_{max}R_2}{R_2+R_3}=\frac{(0.0189A)(2500\Omega)}{6200\Omega}=0.00762A$ $I_2=0.0113A$ To check if resistors 2 and 3 will exceed their maximum power output when resistor 1 is working at maximum power output, we need to find their power output. $P_2=I_2^2R_2=(0.0113A)^2(2500\Omega)=0.318V$ $P_3=I_3^2R_3=(0.00762A)^2(3700\Omega)=0.215V$ Both resistors are working below their maximum power output, so the maximum voltage that can be applied across the whole network is $V_{max}=I_{max}R_1+I_{max}R_{2,3}=(0.0189A)(1400\Omega)+(0.0189A)\Big(\frac{1}{\frac{1}{R_2}+\frac{1}{R_3}}\Big)=54.7V$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.