Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 14 - Heat - Search and Learn - Page 411: 4

Answer

a) $1.812\times 10^5\;\rm W$ b) $3\times 10^8\;\rm J$ c) $\$ 773$

Work Step by Step

a) We know that the rate of the heat transferred by conduction is given by $$\dfrac{Q}{t}=kA\dfrac{T_1-T_2}{l}$$ And we have here 3 areas, walls, roof, and window. So, the net heat transferred by conduction is given by $$\left(\dfrac{Q}{t}\right)_{net}=k_{wall}A_{wall}\dfrac{T_1-T_2}{l_{wall}}+k_{roof}A_{roof}\dfrac{T_1-T_2}{l_{roof}}+k_{window}A_{window}\dfrac{T_1-T_2}{l_{window}}$$ Noting that each area has the same temperature difference since we need the inside temperature to remain at $23^\circ \rm C $ while outside the temperature was $-15^\circ \rm C $ Thus, $$\left(\dfrac{Q}{t}\right)_{net}=\left[\dfrac{k_{wall}A_{wall}}{l_{wall}}+\dfrac{k_{roof}A_{roof}}{l_{roof}}+\dfrac{k_{window}A_{window}}{l_{window}}\right]\left(T_1-T_2\right)$$ Now we need to plug the known; $$\left(\dfrac{Q}{t}\right)_{net}=\left[\dfrac{0.023\cdot 410}{0.195}+\dfrac{ 0.1\cdot 250}{0.055}+\dfrac{ 0.84\cdot 33}{0.65\times 10^{-2} }\right]\left(23-(-15)\right)$$ $$\left(\dfrac{Q}{t}\right)_{net}=\color{red}{\bf 1.812\times 10^5}\;\rm W$$ b) The total heat needed to warm the whole house is the heat needed to warm the air plus the heat loss due to conduction. Thus, $$Q_t=Q_{air}+Q_{loss}$$ $$Q_t=m_{air}c_{air}\Delta T +Q_{loss}$$ Noting that $m_{air}=\rho_{air} V_{air}$, and that $Q_{loss}=\left(\dfrac{Q}{t}\right)_{net}\times \Delta t$ $$Q_t=\rho_{air} V_{air}c_{air}\Delta T +\left(\dfrac{Q}{t}\right)_{net} \Delta t\tag 1$$ Note that the Specific Heat of air is $0.24 \;\rm kcal/kg.^\circ C$ and to conert it to Joules, we need to multiply by $\rm 4186\; J/kcal$. In this case we assumed that the temperature difference between inside and outside is the average between the start of heating at $\rm 15^\circ C$ and the final temperature of $\rm 23^\circ C$ while the out side temperature is still $\rm -15^\circ C$. $$\Delta T_{avg}=\dfrac{30+38}{2}=34^\circ \;\rm C$$ And hence, $$\left(\dfrac{Q}{t}\right)_{net}=\left[\dfrac{0.023\cdot 410}{0.195}+\dfrac{ 0.1\cdot 250}{0.055}+\dfrac{ 0.84\cdot 33}{0.65\times 10^{-2} }\right]\left(34\right)$$ $$\left(\dfrac{Q}{t}\right)_{net}=\color{blue}{1.62\times 10^5}\;\rm W$$ Plugging the know into (1); $$Q_t=\left[1.29\cdot 750\cdot 0.24\cdot 4186\cdot (23-15) \right]+\left[ 1.62\times 10^5\cdot 30\cdot 60\right]$$ $$Q_t=\color{red}{\bf3.0\times 10^8}\;\rm J$$ c) Since one month contains 30 days, so $$\Delta t=1\;\rm month\cdot \dfrac{30\;day}{1\;month}\cdot \dfrac{24\;h}{1\;day}\cdot \dfrac{3600\;s}{1\;h}=2.592\times 10^6\;\rm s$$ We also know that 90$\%$ of gas used in heating, so the amount of gas used is $$ 0.9Q_{gas}=\left(\dfrac{Q}{t}\right)_{net}\cdot \Delta t $$ $$Q_{gas}=\dfrac{\left(\dfrac{Q}{t}\right)_{net}\cdot \Delta t}{0.9}$$ Plugging the know; $$Q_{gas}=\dfrac{ 1.812\times 10^5 \cdot 2.592\times 10^6 }{0.9}=5.22\times 10^{11}\;\rm J$$ The amount of gas in kg; $$m=5.22\times 10^{11}\;\rm J\cdot \dfrac{1\;kg}{5.4\times 10^7\;\rm J}=9666.6\;\rm kg$$ And hence, the cost per month; $${\rm Cost}=9666.6\;\rm kg\cdot \dfrac{\$0.08}{1\;kg}=\color{red}{\$\bf773}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.