Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 14 - Heat - Search and Learn - Page 411: 2

Answer

a) $1.73\times10^{17}\;\rm W$ b) $4.74^\circ \;\rm C$

Work Step by Step

a) To find the rate at which the whole Earth receives energy from the Sun, we need to recall that $$\dfrac{Q}{t}=A\cdot \text{Solar constant}$$ The area of Earth that receives heat from the sun is the cross-sectional area of Earth which is a huge circle with a radius of $R_E$. $$\dfrac{Q}{t}=\pi R_E^2\cdot \text{Solar constant}=\pi \cdot \left(6.38\times10^6\right)^2\cdot 1350$$ $$\dfrac{Q}{t}=\color{red}{\bf1.73\times10^{17}}\;\rm W\tag 1$$ b) Now we need to find the temperature of Earth when it is emitting the same amount of energy back to space. $$\dfrac{Q}{t}=\sigma\epsilon A\left[T_E^4-T_{space}^4\right]$$ Solving for $T_E$; $$\dfrac{Q}{t}\cdot\dfrac{1}{\sigma\epsilon A}= T_E^4-T_{space}^4 $$ $$T_E^4=\dfrac{Q}{t}\cdot\dfrac{1}{\sigma\epsilon A}+T_{space}^4 $$ $$T_E =\sqrt[4]{\dfrac{Q}{t}\cdot\dfrac{1}{\sigma\epsilon A}+T_{space}^4 }$$ Now since the whole Earth emits heat, the area here is the area of a sphere $A=4\pi r_E^2$ $$T_E =\sqrt[4]{\dfrac{Q}{t}\cdot\dfrac{1}{\sigma\epsilon \cdot 4\pi r_E^2}+T_{space}^4 }$$ Plugging the know and from (1); $$T_E = \sqrt[4]{\left[1.73\times10^{17} \cdot\dfrac{1}{5.67\times10^{-8}\cdot 1\cdot 4\pi\cdot \left(6.38\times10^6\right)^2}\right]+2.7^4 }$$ $$T_E=277.9\;\rm K\approx \color{red}{\bf4.74}^\circ\rm C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.