Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 12 - Sound - General Problems - Page 358: 96

Answer

$\Delta f=136Hz$

Work Step by Step

Use equation $f'=f\Big(\frac{v_{snd}\pm v_{obs}}{v_{snd}\mp v_{source}}\Big)$, upper signs if moving toward each other and lower signs if moving away from each other. 1. Blood is observer moving away from sound source. $v_{source}=0m/s$ $f'=f\Big(\frac{v_{snd}-v_{obs}}{v_{snd}}\Big)$ for blood moving away from source 2. Blood is the sound source moving away from observer at rest $v_{obs}=0m/s$ $f''=f'\Big(\frac{v_{snd}}{v_{snd}+v_{source}}\Big)$ for blood moving away from observer $f''=f\Big(\frac{v_{snd}- v_{obs}}{v_{snd}}\Big)\Big(\frac{v_{snd}}{v_{snd}+v_{source}}\Big)$ $f''=f\Big(\frac{v_{snd}-v_{obs}}{v_{snd}+v_{source}}\Big)$ Beat frequency $\Delta f = f''-f=f\Big(\frac{v_{snd}-v_{obs}}{v_{snd}+v_{source}}\Big)-f$ $v_{blood} = v_{obs}=v_{source}$ $\Delta f =f\Big(\frac{v_{snd}-v_{blood}}{v_{snd}+v_{blood}}\Big)-f=f\Big(\frac{2v_{blood}}{v_{snd}+v_{blood}}\Big)$ $\Delta f=(3.5\times10^6Hz)\Big(\frac{2(3\times10^{-2}m/s)}{1540m/s+3\times10^{-2}m/s}\Big)=136Hz$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.