Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 11 - Oscillations and Waves - Problems - Page 324: 32

Answer

$v_{max}=\sqrt{2gL(1-cos \theta_0)}$.

Work Step by Step

See Figure 11-12. When a pendulum of length L is released from rest, at an angle of $\theta_0$ away from the vertical, the mass m is at a height of $L(1-cos \theta_0)$ above the lowest point. Use energy conservation to relate the potential energy at the starting, maximum height of the pendulum, and the kinetic energy at the lowest point. Let the lowest point represent zero gravitational potential energy. $$PE_i=KE_f$$ $$mg L(1-cos \theta_0)=\frac{1}{2}mv_{max}^2$$ $$v_{max}=\sqrt{2gL(1-cos \theta_0)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.