Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 11 - Oscillations and Waves - General Problems - Page 326: 81

Answer

a) $f_{G2}=784Hz$ $f_{G3}=1176Hz$ $f_{B2}=988Hz$ $f_{B3}=1482Hz$ b) $\frac{m_B}{m_G}=1.59$ c) $\frac{l_G}{l_B}=1.26$ d) $\frac{F_{TG}}{F_{TB}}=0.630$

Work Step by Step

a) $f_n=nf_1$ $f_{G2}=2\times392Hz=784Hz$ $f_{G3}=3\times392Hz=1176Hz$ $f_{B2}=2\times494Hz=988Hz$ $f_{B3}=3\times494Hz=1482Hz$ b) $v=\sqrt{\frac{F_Tl}{m}}=2lf_1$ $m=\frac{F_Tl}{v^2}$ $\frac{m_G}{m_B}=\frac{v^2_B}{v^2_G}=\frac{(2l(494Hz))^2}{(2l(392Hz))^2}=1.59$ c) $F_T=\mu v^2=\mu (2lf_1)^2$ $(2l_Gf_{G1})^2=(2l_Bf_{B1})^2$ $\frac{l_G}{l_B}=\frac{f_{B1}}{l_{G1}}=\frac{494Hz}{392Hz}=1.26$ d) $\frac{F_{TG}}{F_{TB}}=\frac{v_G^2}{v_B^2}=\frac{1}{1.59}=0.630$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.