Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 8 - Dynamics II: Motion in a Plane - Exercises and Problems - Page 212: 36

Answer

a) $ T=\dfrac{mgL}{\sqrt{L^2-r^2 }}$ b) $ \omega=\sqrt{\dfrac{ g }{\sqrt{L^2-r^2}} } $ c) $5.0\;\rm N,\;30.2\;\rm rpm$

Work Step by Step

a) First of all, we need to draw the force diagram of the ball, as we see in the figures below. $$\sum F_y=T\cos\theta-mg=ma_y=m(0)=0$$ Thus, $$T=\dfrac{mg}{\cos\theta}\tag 1$$ Where $\cos\theta$, as we see below, is given by $$\cos\theta=\dfrac{h}{L}$$ where $h$ is the height of the cone and is given by the right-triangle $$h^2=L^2-r^2\\ \rightarrow h=\sqrt{L^2-r^2}$$ So that, $$\cos\theta=\dfrac{\sqrt{L^2-r^2}}{L}$$ Plugging into (1); $$\boxed{T=\dfrac{mgL}{\sqrt{L^2-r^2}}}$$ ____________________________________________________ b) The ball's speed is given by $$\sum F_r=T\sin\theta=ma_r=m\dfrac{v^2}{r}$$ Thus, $$T\sin\theta =m\dfrac{v^2}{r}$$ where $v=r\omega$ $$T\sin\theta =m\dfrac{\omega^2r^2}{r}=m\omega^2r$$ Plugging $T$ from the boxed formula above; $$\dfrac{ \color{red}{\bf\not}mgL}{\sqrt{L^2-r^2}}\sin\theta = \color{red}{\bf\not}m\omega^2r$$ $$\dfrac{ gL}{\sqrt{L^2-r^2}}\sin\theta = \omega^2r$$ where $\sin\theta=r/L$; $$\dfrac{ g \color{red}{\bf\not}L}{\sqrt{L^2-r^2}}\dfrac{ \color{red}{\bf\not}r}{ \color{red}{\bf\not}L} = \omega^2 \color{red}{\bf\not}r$$ $$\dfrac{ g }{\sqrt{L^2-r^2}} = \omega^2 $$ Therefore, $$\boxed{\omega=\sqrt{\dfrac{ g }{\sqrt{L^2-r^2}} }}$$ ____________________________________________________ c) To find the tension, we need to plug the known into the first boxed formula above. $$ T=\dfrac{mgL}{\sqrt{L^2-r^2}} =\dfrac{0.5\times 9.8\times 1}{\sqrt{1^2-0.2^2}} $$ $$T=\color{red}{\bf 5.0}\;\rm N$$ .. To find the angular speed, we need to plug the known into the second boxed formula above. $$ \omega=\sqrt{\dfrac{ 9.8}{\sqrt{1^2-0.2^2}} } =3.16\;\rm rad/s$$ Finding it in rpm; $$ \omega= 3.16\;\rm rad/s\left(\dfrac{1\;rev}{2\pi\;rad}\right)\left(\dfrac{60\;s}{1 \;min}\right)$$ $$\omega=\color{red}{\bf 30.2}\;\rm rpm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.