Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 42 - Nuclear Physics - Exercises and Problems - Page 1275: 48

Answer

a) ${\bf 58.05}\;\rm h$ b) ${\bf 188.5}\;\rm h$

Work Step by Step

$$\color{blue}{\bf [a]}$$ The activity of a radioactive sample decays exponentially, so $$ R = R_0 \left( \frac{1}{2} \right)^{t / t_{1/2}} $$ where: - $ R = 95 \, \text{mCi} $: Activity after 16 hours. - $ R_0 = 115 \, \text{mCi} $: Initial activity. - $ t = 16 \, \text{hours} $. - $ t_{1/2} $: Half-life of the tracer (unknown). Solve for $ t_{1/2} $: $$ \frac{R}{R_0} = \left( \frac{1}{2} \right)^{t / t_{1/2}} $$ Take the Natural Logarithm of Both Sides: $$\ln\left[ \frac{R}{R_0} \right]=\ln\left[ \frac{1}{2} \right]^{t / t_{1/2}}$$ $$\ln\left[ \frac{R}{R_0} \right]=\dfrac{t}{t_{_{1/2}}}\ln\left[ \frac{1}{2} \right]$$ Thus, $$t_{_{1/2}}=t\;\dfrac{ \ln\left[ \frac{1}{2} \right]} {\ln\left[ \frac{R}{R_0} \right]}$$ Substitute the known values: $$t_{_{1/2}}=(16)\;\dfrac{ \ln\left[ \dfrac{1}{2} \right]} {\ln\left[ \dfrac{95}{115} \right]}$$ $$t_{_{1/2}}=\color{red}{\bf 58.05}\;\rm h$$ Thus, the half-life of the tracer is approximately 58.0 hours. $$\color{blue}{\bf [b]}$$ Now we need to find the time $ t $ it takes for the activity to decay from $ 0.95 R_0 $ (95 mCi) down to the lowest usable level, 10 mCi. $$ R = R_0 \left( \frac{1}{2} \right)^{t / t_{1/2}} $$ where: - $ R = 10 \, \text{mCi} $ - $ R_0 = 95 \, \text{mCi} $ - $ t_{1/2} = 58.05 \, \text{hours} $ Solve for $ t $: $$ \frac{R}{R_0} = \left( \frac{1}{2} \right)^{t / t_{1/2}} $$ Take the Natural Logarithm of Both Sides: $$\ln\left[ \frac{R}{R_0} \right]=\ln\left[\left( \frac{1}{2} \right)^{t / t_{1/2}}\right]$$ $$\ln\left[ \frac{R}{R_0} \right]=\dfrac{t}{t_{_{1/2}}}\ln\left[ \frac{1}{2} \right]$$ $$t=t_{_{1/2}}\;\dfrac{\ln\left[ \frac{R}{R_0} \right]}{ \ln\left[ \frac{1}{2} \right]} $$ Substitute the known: $$t=(58.05 )\;\dfrac{\ln\left[ \dfrac{10}{95} \right]}{ \ln\left[ \dfrac{1}{2} \right]} $$ $$t=\color{red}{\bf 188.5}\;\rm h$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.