Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 40 - One-Dimensional Quantum Mechanics - Exercises and Problems - Page 1214: 43

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We are given that $$ \psi(x) = A x e^{-x^2 / a^2} $$ where $ \psi(x) $ has the following properties: $\Rightarrow$ The function has a node at $ x = 0 $, meaning that $ \psi(0) = 0 $. $\Rightarrow$ As $ x $ moves away from 0, $ \psi(x) $ increases to a peak and then decays exponentially as $ x \to \infty $. See the figure below. $$\color{blue}{\bf [b]}$$ The particle is most likely to be found where the probability density $ |\psi(x)|^2 $ is maximized. To find this point, we need to take the derivative of $ |\psi(x)|^2 $ with respect to $ x $, set it equal to zero, and solve for $ x $. The probability density is given by: $$ |\psi(x)|^2 = A^2 x^2 e^{-2x^2 / a^2} $$ To maximize $ |\psi(x)|^2 $, we need to solve: $$ \frac{d}{dx} |\psi(x)|^2 =\frac{d}{dx} \left(A^2 x^2 e^{-2x^2 / a^2} \right) = 0 $$ $$ A^2 \left( 2x e^{-2x^2 / a^2} - \frac{4x^3}{a^2} e^{-2x^2 / a^2} \right)=0 $$ $$ 2x e^{-2x^2 / a^2} \left(1 - \frac{2x^2}{a^2} \right) = 0 $$ $$1 - \frac{2x^2}{a^2} =0$$ Thus, $$\boxed{ x = \pm \frac{a}{\sqrt{2}} }$$ The particle is most likely to be found at $ x = \pm \frac{a}{\sqrt{2}} $. $$\color{blue}{\bf [c]}$$ The Schrödinger equation in one dimension is given by: $$ \frac{d^2 \psi}{dx^2} = \frac{2m}{\hbar^2} [U(x) - E] \psi(x) $$ Since the energy $ E = 0 $, $$ \frac{d^2 \psi}{dx^2} = \dfrac{2m}{\hbar^2} U(x) \psi(x) $$ Thus, $$ U(x) = \dfrac{\hbar^2}{2m} \dfrac{\dfrac{d^2 \psi}{dx^2}}{\psi(x)}\tag 1 $$ Now we need to find the first derivative of $ \psi(x) $; $$ \psi(x) = A x e^{-x^2 / a^2} $$ $$ \frac{d\psi}{dx} = A \left( e^{-x^2 / a^2} - \frac{2x^2}{a^2} e^{-x^2 / a^2} \right) $$ Now we need to find the second derivative of $ \psi(x) $; $$ \frac{d\psi}{dx} = A \left( e^{-x^2 / a^2} - \frac{2x^2}{a^2} e^{-x^2 / a^2} \right) $$ Differentiate the first term; $$ \frac{d}{dx} \left( e^{-x^2 / a^2} \right) = e^{-x^2 / a^2} \cdot \left( -\frac{2x}{a^2} \right) $$ $$\frac{d}{dx} \left( e^{-x^2 / a^2} \right)= -\frac{2Ax}{a^2} e^{-x^2 / a^2}\tag 2 $$ Differentiate the second term; which is a product of two functions: $ -\frac{2x^2}{a^2} $ and $ e^{-x^2 / a^2} $. We will use the product rule to differentiate it $\left[ \frac{d}{dx} \left( u v \right) = u' v + u v'\right]$ In this case: $ u = - \frac{2x^2}{a^2} $ and $ v = e^{-x^2 / a^2} $ Let's differentiate each term: $ u' = \frac{d}{dx} \left( -\frac{2x^2}{a^2} \right) = -\frac{4x}{a^2} $ $ v' = \frac{d}{dx} \left( e^{-x^2 / a^2} \right) = -\frac{2x}{a^2} e^{-x^2 / a^2} $ Now apply the product rule: $$ \frac{d}{dx} \left( - \frac{2x^2}{a^2} e^{-x^2 / a^2} \right) = \left( -\frac{4x}{a^2} \right) e^{-x^2 / a^2} + \left( -\frac{2x^2}{a^2} \right) \left( -\frac{2x}{a^2} e^{-x^2 / a^2} \right) $$ $$ \frac{d}{dx} \left( - \frac{2x^2}{a^2} e^{-x^2 / a^2} \right) =\left( -\frac{4x}{a^2} \right) e^{-x^2 / a^2} + \left( \frac{4x^3}{a^4} \right) e^{-x^2 / a^2} $$ Now, factor out $ e^{-x^2 / a^2} $: $$ \frac{d}{dx} \left( - \frac{2x^2}{a^2} e^{-x^2 / a^2} \right) = e^{-x^2 / a^2} \left( -\frac{4x}{a^2} + \frac{4x^3}{a^4} \right)\tag 3 $$ Thus, from (2) and (3); $$ \frac{d^2 \psi}{dx^2} = -\frac{2Ax}{a^2} e^{-x^2 / a^2} + A e^{-x^2 / a^2} \left( -\frac{4x}{a^2} + \frac{4x^3}{a^4} \right) $$ Factor out $ A e^{-x^2 / a^2} $ from both terms: $$ \frac{d^2 \psi}{dx^2} = A e^{-x^2 / a^2} \left( -\frac{2x}{a^2} - \frac{4x}{a^2} + \frac{4x^3}{a^4} \right) $$ $$ \frac{d^2 \psi}{dx^2} = A e^{-x^2 / a^2} \left( -\frac{6x}{a^2} + \frac{4x^3}{a^4} \right) $$ Hence, the second derivative of $ \psi(x) $ is: $$ \frac{d^2 \psi}{dx^2} = A e^{-x^2 / a^2} \left( \frac{4x^3}{a^4} - \frac{6x}{a^2} \right)\tag 4 $$ Substituting (4) into (1); $$ U(x) = \frac{\hbar^2}{2m}\dfrac{A e^{-x^2 / a^2} \left( \frac{4x^3}{a^4} - \frac{6x}{a^2} \right) }{ A x e^{-x^2 / a^2} }= \frac{\hbar^2}{2m} \left( \frac{4x^2}{a^4} - \frac{6}{a^2} \right) $$ Thus, $$ \boxed{U(x) = \frac{2 \hbar^2}{m a^2} \left( \frac{x^2}{a^2} - \frac{3}{2} \right)} $$ We can see that this harmonic oscillator's potential energy is been shifted downward by a distance of $ \dfrac{-3 \hbar^2}{m a^2}$, see the graph below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.