Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1055: 68

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the average power for an $RLC$ circuit is given by $$P_{\rm source}=I_{\rm rms}\varepsilon_{\rm rms}\cos\phi\tag 1$$ where $$I=\dfrac{\varepsilon_{\rm rms}}{Z}\tag 2$$ And from the geometry of the figure below, we can see that $$\cos\phi=\dfrac{R}{Z}\tag 3$$ Plug (3), and (2) into (1): $$P_{\rm source}=\dfrac{\varepsilon_{\rm rms}}{Z} \dfrac{R}{Z}\varepsilon_{\rm rms} $$ $$P_{\rm source}=\dfrac{\varepsilon_{\rm rms}^2R}{Z^2} $$ Recalling that $Z^2=(X_L-X_C)^2+R^2 $ $$P_{\rm source}=\dfrac{\varepsilon_{\rm rms}^2R}{(X_L-X_C)^2+R^2} $$ where $X_L=\omega L$, and $X_C=1/\omega C$ $$P_{\rm source}=\dfrac{\varepsilon_{\rm rms}^2R}{(\omega L-\frac{1}{\omega C})^2+R^2} $$ $$P_{\rm source}=\dfrac{\varepsilon_{\rm rms}^2R}{\frac{L^2}{\omega^2}(\omega^2 -\frac{1}{LC})^2+R^2} $$ where $1/LC=\omega_0^2$; $$\boxed{P_{\rm avg}=\dfrac{\varepsilon_{\rm rms}^2\omega^2R}{ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2} }$$ $$\color{blue}{\bf [b]}$$ Maximizing the energy dissipation means $$\dfrac{dP_{\rm avg}}{d\omega}=0$$ $$0=\dfrac{d}{d\omega} \dfrac{\varepsilon_{\rm rms}^2\omega^2R}{ L^2 (\omega^2 -\omega_0^2)^2+R^2} $$ $$ \dfrac{2\varepsilon_{\rm rms}^2\omega R [L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2]-[\varepsilon_{\rm rms}^2\omega^2 R] [4L^2\omega (\omega^2 -\omega_0^2) +2\omega R^2 ]}{ [L^2 (\omega^2 -\omega_0^2)^2 +\omega^2R^2]^2} =0$$ Hence, $$2\varepsilon_{\rm rms}^2\omega R [L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2]-[\varepsilon_{\rm rms}^2\omega^2 R] [4L^2\omega (\omega^2 -\omega_0^2)+2\omega R^2 ]=0$$ $$2 [L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2]- \omega [4L^2\omega (\omega^2 -\omega_0^2) +2\omega R^2 ]=0$$ $$ 2L^2 (\omega^2 -\omega_0^2)^2+2\omega^2R^2 = 4L^2\omega^2 (\omega^2 -\omega_0^2) +2\omega^2 R^2 $$ $$ 2L^2 (\omega^4 -2\omega^2\omega_0^2+\omega_0^4) +2\omega^2R^2 = 4L^2\omega^4 -4L^2\omega^2\omega_0^2+2\omega^2 R^2 $$ $$ 2L^2 \omega^4 -\color{magenta}{ 4L^2\omega^2\omega_0^2}+2L^2\omega_0^4 +\color{blue}{ 2\omega^2R^2} = 4L^2\omega^4 -\color{magenta}{ 4L^2\omega^2\omega_0^2} +\color{blue}{ 2\omega^2R^2} $$ $$ 2L^2 \omega^4 +2L^2\omega_0^4 = 4L^2\omega^4 $$ $$ \omega^4 + \omega_0^4 =2\omega^4 $$ $$\omega^4=\omega_0^4$$ Therefore, $$ \boxed{ \omega =\pm\;\omega_0 }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.