Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 14 - Oscillations - Exercises and Problems - Page 406: 76

Answer

$\approx 500\;\rm m/s$

Work Step by Step

We can solve this problem by using the conservation of energy and momentum laws. The energy is conserved after the collision when the bullet and the block are moving as one unit. so $$\color{red}{\bf\not} \frac{1}{2}kA^2=\color{red}{\bf\not} \frac{1}{2}(m_{\rm bullet}+m_{\rm block})v_1^2$$ where $v_1$ is their velocity after the collision. $$v_1 = \sqrt{ \dfrac{kA^2}{m_{\rm bullet}+m_{\rm block}} }\tag 1$$ The momentum is conserved after and before the collision, $$m_{\rm bullet}v_0=(m_{\rm bullet}+m_{\rm block})v_1$$ So, $$v_0=\dfrac{m_{\rm bullet}+m_{\rm block}}{m_{\rm bullet}}v_1$$ Plugging from (1); $$v_0=\dfrac{m_{\rm bullet}+m_{\rm block}}{m_{\rm bullet}}\sqrt{ \dfrac{kA^2}{m_{\rm bullet}+m_{\rm block}} } $$ $$v_0=\sqrt{\dfrac{(m_{\rm bullet}+m_{\rm block})^2}{m_{\rm bullet}^2} \dfrac{kA^2}{m_{\rm bullet}+m_{\rm block}} } $$ $$v_0=\dfrac{A}{m_{\rm bullet}}\sqrt{k(m_{\rm bullet}+m_{\rm block}) } $$ Plugging the known; $$v_0=\dfrac{0.1}{(10\times 10^{-3})}\sqrt{2500([10\times 10^{-3}]+[1.0]) } $$ $$v_0=\color{red}{\bf 502}\;\rm m/s$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.