Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 14 - Oscillations - Exercises and Problems - Page 406: 72

Answer

See a detailed answer below.

Work Step by Step

First, we need to write the mentioned equations. $\bullet$ Equation 14.54: $$\dfrac{d^2x}{dt^2}+\dfrac{b}{m}\dfrac{dx}{dt}+\dfrac{k}{m}x=0\tag 1$$ $\bullet$ Equation 14.55: $$x_{(t)} = Ae^{-bt/2m} \cos(\omega t + \phi_0)\tag 2$$ $\bullet$ Equation 14.56: $$\omega=\sqrt{\dfrac{k}{m}- \dfrac{b^2}{4m^2}}\tag 3$$ The author asked us to prove that (2) is a solution of (1) if, and only if, the angular frequency is given by (3). Taking the first derivative of $x_{(t)}$ in (2): $$\dfrac{dx}{dt} =\dfrac{d}{dt}\left[ Ae^{-bt/2m} \cos(\omega t + \phi_0)\right]$$ $$\dfrac{dx}{dt} =\dfrac{ -bA}{2m}e^{-bt/2m} \cos(\omega t + \phi_0) -A\omega e^{-bt/2m} \sin(\omega t + \phi_0) $$ $$\dfrac{dx}{dt} =e^{-bt/2m}\left(\dfrac{ -bA}{2m} \cos(\omega t + \phi_0) -A\omega \sin(\omega t + \phi_0) \right)\tag 4$$ Taking the second derivative; $$\dfrac{d^2x}{dt^2} =\dfrac{d}{dt}\left[e^{-bt/2m}\left(\dfrac{ -bA}{2m} \cos(\omega t + \phi_0) -A\omega \sin(\omega t + \phi_0) \right)\right]$$ $$\dfrac{d^2x}{dt^2} =\dfrac{-b}{2m} e^{-bt/2m}\left(\dfrac{ -bA}{2m} \cos(\omega t + \phi_0) -A\omega \sin(\omega t + \phi_0) \right) +\\ e^{-bt/2m}\left(\dfrac{ -(-\omega)bA}{2m} \sin(\omega t + \phi_0) -A\omega^2 \cos(\omega t + \phi_0) \right) $$ $$\dfrac{d^2x}{dt^2} =\dfrac{b^2A}{4m^2} e^{-bt/2m} \cos(\omega t + \phi_0) +\dfrac{ bA\omega }{2m} e^{-bt/2m} \sin(\omega t + \phi_0) +\\ \dfrac{ bA\omega}{2m} e^{-bt/2m} \sin(\omega t + \phi_0) - A\omega^2 e^{-bt/2m} \cos(\omega t + \phi_0) $$ $$\dfrac{d^2x}{dt^2} =e^{-bt/2m}\left[\dfrac{b^2A}{4m^2} \cos(\omega t + \phi_0) - A\omega^2 \cos(\omega t + \phi_0) +\\ \dfrac{ bA\omega }{2m} \sin(\omega t + \phi_0) + \dfrac{ bA\omega}{2m} \sin(\omega t + \phi_0) \right]$$ $$\dfrac{d^2x}{dt^2} =e^{-bt/2m}\left[\cos(\omega t + \phi_0)\left(\dfrac{b^2A}{4m^2} - A\omega^2 \right)+ \\ \sin(\omega t + \phi_0) \left(\dfrac{ bA\omega }{2m} + \dfrac{ bA\omega}{2m} \right) \right]$$ $$\dfrac{d^2x}{dt^2} =e^{-bt/2m}\left[\cos(\omega t + \phi_0)\left(\dfrac{b^2A}{4m^2} - A\omega^2 \right)+ \\ \sin(\omega t + \phi_0) \left(\dfrac{ bA\omega }{ m} \right) \right]\tag 5$$ Plugging (4) and (5) into (1); $$ e^{-bt/2m}\left[\cos(\omega t + \phi_0)\left(\dfrac{b^2A}{4m^2} - A\omega^2 \right)+ \\ \sin(\omega t + \phi_0) \left(\dfrac{ bA\omega }{ m} \right) \right]+\\ \dfrac{b}{m}e^{-bt/2m}\left(\dfrac{ -bA}{2m} \cos(\omega t + \phi_0) -A\omega \sin(\omega t + \phi_0) \right)+\\ \dfrac{k}{m}x=0 $$ $$ e^{-bt/2m} \left[\cos(\omega t + \phi_0)\left(\dfrac{b^2A}{4m^2} - A\omega^2 \right)+ \sin(\omega t + \phi_0) \left(\dfrac{ bA\omega }{ m} \right) \\ +\dfrac{ -b^2A}{2m^2} \cos(\omega t + \phi_0) - \dfrac{bA\omega}{m} \sin(\omega t + \phi_0) \right] +\\ \dfrac{k}{m}x=0 $$ The term of $ \dfrac{bA\omega}{m} \sin(\omega t + \phi_0) $ cancel. $$ e^{-bt/2m}\cos(\omega t + \phi_0) \left[ \dfrac{b^2A}{4m^2} - A\omega^2 +\dfrac{ -b^2A}{2m^2} \right] + \dfrac{k}{m}x=0 $$ Plugging $x$ from (2); $$ e^{-bt/2m}\cos(\omega t + \phi_0) \left[ \dfrac{b^2A}{4m^2} - A\omega^2 +\dfrac{ -b^2A}{2m^2} \right] + \dfrac{k}{m} Ae^{-bt/2m} \cos(\omega t + \phi_0)=0 $$ $$A e^{-bt/2m}\cos(\omega t + \phi_0) \left[ \dfrac{b^2 }{4m^2} - \omega^2 +\dfrac{ -b^2 }{2m^2} + \dfrac{k }{m} \right] =0 $$ Dividing both sides by $A e^{-bt/2m}\cos(\omega t + \phi_0)$, so $$ \dfrac{b^2 }{4m^2} - \omega^2 +\dfrac{ -b^2 }{2m^2} + \dfrac{k }{m} =0 $$ Solving for $\omega^2$; $$ \omega^2 = \dfrac{b^2 -2b^2 }{4m^2} + \dfrac{k }{m} = \dfrac{-b^2 }{4m^2} + \dfrac{k }{m} $$ Therefore, $$ \omega =\sqrt{\dfrac{k }{m} - \dfrac{ b^2 }{4m^2} } $$ which is equation (3) as the author asked.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.