#### Answer

(a) $\tau_g = 34.3~N~m$
(b) $\tau_g = 24.3~N~m$

#### Work Step by Step

(a) The gravitational torque comes from the center of mass of the arm $m_a$ and the ball $m_b$ in the person's hand. We can find the magnitude of the gravitational torque;
$\tau_g = r_a\times m_a~g+r_b\times m_b~g$
$\tau_g = (0.35~m)(4.0~kg)(9.80~m/s^2)+ (0.70~m)(3.0~kg)(9.80~m/s^2)$
$\tau_g = 34.3~N~m$
(b) We can find the magnitude of the gravitational torque when the arm is at an angle of $45^{\circ}$:
$\tau_g = r_a\times m_a~g+r_b\times m_b~g$
$\tau_g = (0.35~m)(4.0~kg)(9.80~m/s^2)~sin(45^{\circ})+ (0.70~m)(3.0~kg)(9.80~m/s^2)~sin(45^{\circ})$
$\tau_g = 24.3~N~m$