Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 21 - Magnetic Forces and Magnetic Fields - Problems - Page 608: 5

Answer

$57.7^{\circ}$

Work Step by Step

The magnetic fore acting on a particle having charge $q$ and moving with a velocity $(\vec v)$ in a uniform magnetic field $(\vec B)$ is given by $\vec F=q(\vec v\times \vec B)$ or, $|\vec F|=qvB\sin\theta$, where $\theta$ is angle between $\vec v$ and $\vec B$. In first case, $|\vec F|=F$ and $\theta=25^{\circ}$ Therefore $ F=qvB\sin25^{\circ}$ ..................$(1)$ Let, the particle is moving with an angle $\phi$ with respect to this field, when it experiences the magnetic force. Thus, in second case, $2 F=qvB\sin \phi$ ..................$(2)$ Dividing euation $(2)$ by equation $(1)$, we get, $\frac{2F}{F}=\frac{qvB\sin \phi}{qvB\sin25^{\circ}}$ Or, $ \sin \phi=2\times\sin25^{\circ}$ $\phi\approx57.7^{\circ}$ Thus, the particle will make $57.7^{\circ}$ with the magnetic field, when it experiences a magnetic force of $2F$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.