Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 14 - The Ideal Gas Law and Kinetic Theory - Problems - Page 387: 61

Answer

343.35 m/s

Work Step by Step

Here we use equations 14.6 $\frac{1}{2}mv_{rms}^{2}=\frac{3}{2}kT$ and the ideal gas law $PV=nRT$ to find the rms speed. $\frac{1}{2}mv_{rms}^{2}=\frac{3}{2}kT=>v_{rms}=\sqrt {\frac{3kT}{m}}$ $v_{rms}=\sqrt {\frac{3k(\frac{PV}{nR})}{m}}=\sqrt {\frac{3kPV}{nmR}}-(1)$ The value of m for $SO_{2}$ can be calculated as follows. $m=\{32.07\space u+2(15.9994\space u)\}(\frac{1.6605\times10^{-27}kg}{1\space u})=1.064\times10^{-25}kg$ Let's plug known values into equation (1), $v_{rms}=\sqrt {\frac{3(1.38\times10^{-23}J/K)(2.12\times10^{4}Pa)(50\space m^{3})}{(421\space mol)(1.064\times10^{-25}kg)(8.31\space J/mol\space K)}}=343.35\space m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.