Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 30 - Induction and Inductance - Problems - Page 896: 8

Answer

1.4 T/s

Work Step by Step

Faraday's law of induction states $\varepsilon=-\frac{d\Phi_{B}}{dt}$ $\vec{B}$ is perpendicular to $\vec{A}$ and $\vec{B}$ is uniform. Therefore, $\Phi_{B}=BA$ which gives $\varepsilon=-\frac{d(BA)}{dt}=-A\frac{dB}{dt}$ $\implies |\frac{dB}{dt}|=\frac{\varepsilon}{A}=\frac{iR}{A}$ Now, $i=10\,A$ (given), $A=\pi\times(\frac{d}{2})^{2}=\pi(5\times10^{-2}\,m)^{2}=7.85\times10^{-3}\,m^{2}$ and $R=\frac{\rho L}{Area}=\frac{\rho\times\pi d}{\pi (D/2)^{2}}=\frac{\rho\times d}{(D/2)^{2}}=\frac{1.69\times10^{-8}\Omega\cdot m\times10\times10^{-2}\,m}{(1.25\times10^{-3}\,m)^{2}}$ $=1.08\times10^{-3}\,\Omega$ Substituting the values of i, R and A, we get $|\frac{dB}{dt}|=\frac{10\,A\times1.08\times10^{-3}\,\Omega}{7.85\times10^{-3}\,m^{2}}=1.4\,T/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.