Answer
$R = 1.2\times 10^{-3}~\Omega$
Work Step by Step
We can find an expression for the magnitude of the induced emf:
$\mathscr{E} = \frac{d\Phi}{dt}$
$\mathscr{E} = A\frac{\Delta B}{\Delta t}$
We can find an expression for the induced current:
$i = \frac{\mathscr{E}}{R}$
$i = \frac{A~\Delta B}{R~\Delta t}$
We can find the loop's resistance:
$q = i~\Delta t$
$q = \frac{A~\Delta B}{R}$
$R = \frac{A~\Delta B}{q}$
$R = \frac{(8.0\times 10^{-4}~m^2)~(9.0\times 10^{-3}~T)}{6.0\times 10^{-3}~C}$
$R = 1.2\times 10^{-3}~\Omega$