Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 23 - Gauss' Law - Problems - Page 683: 53c

Answer

$E = 5.57\times 10^{-3}~N/C$

Work Step by Step

We can use an integral to find the charge within a sphere of radius $r = \frac{R}{2.00}$: $q = \int_{0}^{R/2}~\rho~4\pi~r^2~dr$ $q = \int_{0}^{R/2}~\frac{(14.1~pC/m^3)~r}{R}~4\pi~r^2~dr$ $q = \int_{0}^{R/2}~\frac{(14.1~pC/m^3)~4\pi~r^3}{R}~dr$ $q = \frac{(14.1~pC/m^3)~4\pi~r^4}{4R} ~\Big \vert_{0}^{R/2}$ $q = \frac{(14.1~pC/m^3)~4\pi~(R/2.00)^4}{4R} -0$ $q = \frac{(14.1~pC/m^3)~4\pi~R^3}{64}$ $q = \frac{(14.1\times 10^{-12}~C/m^3)~(4\pi)~(0.0560~m)^3}{64}$ $q = 4.86\times 10^{-16}~C$ We can draw a Gaussian sphere with radius $r = \frac{R}{2.00}$ that is concentric with the sphere of charge. We can find the magnitude of the electric field: $\epsilon_0~\Phi = q$ $(\epsilon_0)(E)(4\pi~r^2) = q$ $E = \frac{q}{4\pi~\epsilon_0~r^2}$ $E = \frac{4.86\times 10^{-16}~C}{(4\pi)~(8.854\times 10^{-12}~F/m)~(0.0280~m)^2}$ $E = 5.57\times 10^{-3}~N/C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.