Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 22 - Electric Fields - Problems - Page 658: 73a

Answer

$x_0=-1.0 \mathrm{~cm}$.

Work Step by Step

The fact that the second measurement at the location $(2.0 \mathrm{~cm}, 0)$ gives $\vec{E}=(100 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}$ indicates that $y_0=0$, that is, the charge must be somewhere on the $x$ axis. Thus, the above expression can be simplified to $ \vec{E}=\frac{q}{4 \pi \varepsilon_0} \frac{\left(x-x_0\right) \hat{i}+y \hat{j}}{\left[\left(x-x_0\right)^2+y^2\right]^{3 / 2}} . $ On the other hand, the field at $(3.0 \mathrm{~cm}, 3.0 \mathrm{~cm})$ is $\vec{E}=(7.2 \mathrm{~N} / \mathrm{C})(4.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}})$, which gives $E_y / E_x=3 / 4$. Thus, we have $ \frac{3}{4}=\frac{3.0 \mathrm{~cm}}{3.0 \mathrm{~cm}-x_0} $ which implies $x_0=-1.0 \mathrm{~cm}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.