## College Physics (4th Edition)

Published by McGraw-Hill Education

# Chapter 5 - Problems - Page 190: 82

#### Answer

The penny will start to slide off $2.93~seconds$ after the turntable is turned on.

#### Work Step by Step

At low angular speeds, the force of friction can provide the required centripetal force to keep the penny moving in a circle. We can find the angular speed when the force of static friction reaches its maximum possible value: $F_f = m~a_r$ $mg~\mu_s = m~\omega^2~r$ $\omega = \sqrt{\frac{g~\mu_s}{r}}$ $\omega = \sqrt{\frac{(9.80~m/s^2)(0.350)}{0.100~m}}$ $\omega = 5.857~rad/s$ We can find the time $t$ when the turntable reaches this angular speed: $\omega_f = \omega_0+\alpha~t$ $t = \frac{\omega_f - \omega_0}{\alpha}$ $t = \frac{5.857~rad/s - 0}{2.00~rad/s^2}$ $t = 2.93~s$ The penny will start to slide off $2.93~seconds$ after the turntable is turned on.

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.