General Chemistry: Principles and Modern Applications (10th Edition)

Published by Pearson Prentice Hal
ISBN 10: 0132064529
ISBN 13: 978-0-13206-452-1

Chapter 15 - Priciples of Chemical Equilibrium - Exercises - Direction and Extent of Chemical Change - Page 690: 31

Answer

(a) Since $Q_c \lt K_c$, the mixture is not at equilbrium; (b) And the net change will occur in the products direction, in order to increase the $Q_c$.

Work Step by Step

1. Calculate all the concentrations: $$[SO_2] = ( 0.455 )/(1.90) = 0.239 M$$ $$[O_2] = ( 0.183 )/(1.90) = 0.0963 M$$ $$[SO_3] = ( 0.568 )/(1.90) = 0.299 M$$ - The exponent of each concentration is equal to its balance coefficient. $$Q_c = \frac{[Products]}{[Reactants]} = \frac{[ SO_3 ] ^{ 2 }}{[ SO_2 ] ^{ 2 }[ O_2 ]}$$ 2. Substitute the values and calculate the quocient value: $$Q_c = \frac{( 0.299 )^{ 2 }}{( 0.239 )^{ 2 }( 0.0963 )} = 16.3$$ Since $Q_c \lt K_c$, the mixture is not at equilbrium, and the net change will occur in the products direction, in order to increase the $Q_c$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.