Chemistry: Principles and Practice (3rd Edition)

Published by Cengage Learning
ISBN 10: 0534420125
ISBN 13: 978-0-53442-012-3

Chapter 21 - Nuclear Chemistry - Questions and Exercises - Exercises - Page 934: 21.41



Work Step by Step

Mass of $^{238}U$ decayed=3.22 mg $^{206}Pb\times\frac{238\,mg\,\,^{238}U}{206\,mg\,\,^{206}Pb}=3.72\,mg$ So, the original amount $A_{0}=6.73\,mg+3.72\,mg=10.45\,mg$ and the amount left is $A=6.73\,mg$ Decay constant $k=\frac{0.693}{t_{1/2}}=\frac{0.693}{4.51\times10^{9}\,y}=1.5366\times10^{-10}\,y^{-1}$ Recall that $\ln(\frac{A_{0}}{A})=kt$, where $t$ is the age. $\implies \ln(\frac{10.45}{6.73})=0.440=1.5366\times10^{-10}\,y^{-1}(t)$ Or $t=\frac{0.440}{1.5366\times10^{-10}\,y^{-1}}=2.86\times10^{9}\,y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.