Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.3 Sum and Difference Identities for Cosine - 5.3 Exercises - Page 214: 74a

Answer

$$\cos255^\circ=\frac{\sqrt2-\sqrt6}{4}$$

Work Step by Step

$$\cos255^\circ$$ 1) We can write $255^\circ$ as the sum of $180^\circ$ and $75^\circ$. $$\cos255^\circ=\cos(180^\circ+75^\circ)$$ Now we expand $\cos(180^\circ+75^\circ)$ according to the cosine sum identity: $$\cos255^\circ=\cos180^\circ\cos75^\circ-\sin180^\circ\sin75^\circ$$ $$\cos255^\circ=(-1)\times\cos75^\circ-0\times\sin75^\circ$$ $$\cos255^\circ=-\cos75^\circ$$ So now the job is to calculate $-\cos75^\circ$ 2) We can write $75^\circ$ as the sum of $30^\circ$ and $45^\circ$ $$-\cos75^\circ=-\cos(30^\circ+45^\circ)$$ Now we expand $\cos(30^\circ+45^\circ)$ according to the cosine sum identity: $$-\cos75^\circ=-(\cos30^\circ\cos45^\circ-\sin30^\circ\sin45^\circ)$$ $$-\cos75^\circ=-\Big[\Big(\frac{\sqrt3}{2}\Big)\Big(\frac{\sqrt2}{2}\Big)-\Big(\frac{1}{2}\Big)\Big(\frac{\sqrt2}{2}\Big)\Big]$$ $$-\cos75^\circ=-\Big(\frac{\sqrt6}{4}-\frac{\sqrt2}{4}\Big)$$ $$-\cos75^\circ=-\Big(\frac{\sqrt6-\sqrt2}{4}\Big)$$ $$-\cos75^\circ=\frac{\sqrt2-\sqrt6}{4}$$ 3) Therefore, $$\cos255^\circ=-\cos75^\circ=\frac{\sqrt2-\sqrt6}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.