Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 202: 48

Answer

$$(\sec\alpha-\tan\alpha)^2=\frac{1-\sin\alpha}{1+\sin\alpha}$$ It is an identity, by representing the left side in terms of $\sin\alpha$.

Work Step by Step

$$(\sec\alpha-\tan\alpha)^2=\frac{1-\sin\alpha}{1+\sin\alpha}$$ In this exercise, we would deal with the left side first. $$A=(\sec\alpha-\tan\alpha)^2$$ - Reciprocal Identity: $$\sec\alpha=\frac{1}{\cos\alpha}$$ - Quotient Identity: $$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}$$ Therefore, $$\sec\alpha-\tan\alpha=\frac{1}{\cos\alpha}-\frac{\sin\alpha}{\cos\alpha}=\frac{1-\sin\alpha}{\cos\alpha}$$ $A$ would thus be $$A=\Big(\frac{1-\sin\alpha}{\cos\alpha}\Big)^2$$ $$A=\frac{(1-\sin\alpha)^2}{\cos^2\alpha}$$ Using Pythagorean Identity for $\cos^2\alpha$: $$\cos^2\alpha=1-\sin^2\alpha$$ $$A=\frac{(1-\sin\alpha)^2}{1-\sin^2\alpha}$$ $$A=\frac{(1-\sin\alpha)^2}{(1-\sin\alpha)(1+\sin\alpha)}$$ (for $a^2-b^2=(a-b)(a+b)$) $$A=\frac{1-\sin\alpha}{1+\sin\alpha}$$ The right side has been proved to be similar with the left side. The trigonometric expression is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.