Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 202: 47

Answer

$$\frac{1-\cos x}{1+\cos x}=(\cot x-\csc x)^2$$ The trigonometric expression is an identity.

Work Step by Step

$$\frac{1-\cos x}{1+\cos x}=(\cot x-\csc x)^2$$ The right side comprises of $\cot x$ and $\csc x$ so we need to deal with it first. $$A=(\cot x-\csc x)^2$$ $$A=\cot^2x-2\cot x\csc x+\csc^2x$$ $$A=(\cot^2x+\csc^2x)-2\cot x\csc x$$ - For $\cot^2x+\csc^2x$, we use the Pythagoren Identity: $$\csc^2x=1+\cot^2x$$ Therefore, $$\cot^2x+\csc^2x=\cot^2x+1+\cot^2x=2\cot^2x+1$$ Now we transform $\cot x$: $$\cot x=\frac{\cos x}{\sin x}$$ So, $$\cot^2x+\csc^2x=2\times\frac{\cos^2x}{\sin^2x}+1=\frac{2\cos^2x+\sin^2x}{\sin^2x}\hspace{1cm}(1)$$ - For $2\cot x\csc x$, we transform both $\cot x$ and $\csc x$: $$\cot x=\frac{\cos x}{\sin x}$$ $$\csc x=\frac{1}{\sin x}$$ Therefore, $$2\cot x\csc x=2\times\frac{\cos x}{\sin x}\times\frac{1}{\sin x}=\frac{2\cos x}{\sin^2 x}\hspace{1cm}(2)$$ Combine $(1)$ and $(2)$ into $A$: $$A=\frac{2\cos^2x+\sin^2x}{\sin^2x}-\frac{2\cos x}{\sin^2 x}$$ $$A=\frac{2\cos^2x+\sin^2x-2\cos x}{\sin^2x}$$ $$A=\frac{(\cos^2x+\sin^2x)+\cos^2x-2\cos x}{\sin^2 x}$$ $$A=\frac{\cos^2x-2\cos x+1}{\sin^2 x}$$ (for $\cos^2x+\sin^2x=1$) $$A=\frac{(\cos x-1)^2}{\sin^2 x}$$ We find the left side having only $\cos x$, so we need to change the denominator also to $\cos x$ by $\sin^2x=1-\cos^2x$ $$A=\frac{(\cos x-1)^2}{1-\cos^2x}$$ $$A=\frac{(1-\cos x)^2}{(1-\cos x)(1+\cos x)}$$ (for $(a-b)^2=(b-a)^2$ and $a^2-b^2=(a-b)(a+b)$) $$A=\frac{1-\cos x}{1+\cos x}$$ The trigonometric expression is thus an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.