Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 3 - Radian Measure and the Unit Circle - Section 3.3 The Unit Circle and Circular Functions - 3.3 Exercises - Page 118: 70

Answer

$s\in\{ \displaystyle \frac{\pi}{3}$ , $\displaystyle \frac{2\pi}{3},\ \displaystyle \frac{4\pi}{3},\ \displaystyle \frac{5\pi}{3} \}$

Work Step by Step

For any real number $s$ represented by a directed arc on the unit circle, $\sin s=y\quad \cos s=x \quad \displaystyle \tan s=\frac{y}{x} (x\neq 0)$ Use Figure 13 on page 111. ---------------- In the interval $[0,2\pi)$, (the unit circle), we search for points (x,y), such that $(\displaystyle \frac{y}{x})^{2}=3$ ($\displaystyle \tan s=\frac{y}{x} (x\neq 0)$ $(\displaystyle \frac{y}{x})^{2}=3\qquad /\sqrt{...}$ $\displaystyle \frac{y}{x}=\pm\sqrt{3}$ In quadrant I we find the point $(\displaystyle \frac{1}{2},\frac{\sqrt{3}}{2})$ for which $ \displaystyle \frac{y}{x}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$ This point is assigned to $60^{o}$, or $s=\displaystyle \frac{\pi}{3}$ rad Applying symmetry, we find the points in the other three quadrants (for which $\displaystyle \frac{y}{x}=\pm\sqrt{3}$): Q.II:$\quad (-\displaystyle \frac{1}{2},\frac{\sqrt{3}}{2}),\quad\frac{y}{x}=-\sqrt{3}, \quad s=\frac{\pi}{3}$ Q.III:$\displaystyle \quad(-\frac{1}{2},-\frac{\sqrt{3}}{2}),\quad\frac{y}{x}=+\sqrt{3}, \quad s=\frac{4\pi}{3}$ Q.IV:$\displaystyle \quad(\frac{1}{2},-\frac{\sqrt{3}}{2}),\quad\frac{y}{x}=-\sqrt{3}, \quad s=\frac{5\pi}{3}$ $s\in\{ \displaystyle \frac{\pi}{3}$ , $\displaystyle \frac{2\pi}{3},\ \displaystyle \frac{4\pi}{3},\ \displaystyle \frac{5\pi}{3} \}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.