Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Review Exercises - Page 409: 17



Work Step by Step

Step 1: Multiplying both the numerator and the denominator by the complex conjugate of the denominator: $\frac{2+i}{1-5i}\times\frac{1+5i}{1+5i}$ Step 2: $\frac{(2+i)(1+5i)}{(1-5i)(1+5i)}=\frac{2(1+5i)+i(1+5i)}{(1)^{2}-(5i)^{2}}=\frac{2+10i+i+5i^{2}}{1-25i^{2}}$ Step 3: $\frac{2+10i+i+5i^{2}}{1-25i^{2}}=\frac{2+11i+5(-1)}{1-25(-1)}=\frac{2+11i-5}{26}$ Step 4: $\frac{2+11i-5}{26}=\frac{-3+11i}{26}=-\frac{3}{26}+\frac{11i}{26}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.