Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.4 De Moivre's Theorem: Powers and Roots of Complex Numbers - 8.4 Exercises - Page 382: 17



Work Step by Step

Since, $(-2-2i)=2\sqrt 2(\cos 225^{\circ}+i \sin 225^{\circ})$ and $(-2-2i)^{5}=2\sqrt 2(\cos 225^{\circ}+i \sin 225^{\circ})^{5}$ De Moivre’s Theorem states that when $ r (\cos\theta+i \sin\theta)$ is a complex number, and if $n$ is any real number, then the following relationship holds. $[ r (\cos\theta+i \sin\theta)]^{n}=[ r^{n} (\cos n\theta+i \sin n\theta)]$ In compact form, this is written $[ r cis\theta]^{n}=[ r^{n} (cis \theta)]$ $2\sqrt 2(\cos 225^{\circ}+i \sin 225^{\circ})^{5}=(2\sqrt 2)^{5}(\cos 5\times 225^{\circ}+i \sin 5\times 225^{\circ})$ $=32\sqrt {32}(\cos 1125^{\circ}+i \sin 1125^{\circ})$ $=128\sqrt 2(\cos 45^{\circ}+i \sin 45^{\circ})$ $=128\sqrt 2(\frac{1}{\sqrt 2}+i.\frac{ 1}{\sqrt 2})$ $=128+128i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.