#### Answer

$90^{\circ}$, orthogonal

#### Work Step by Step

Step 1: We let $\textbf {u}=\langle 5,-3 \rangle$ and $\textbf {v}=\langle 3,5 \rangle$
Step 2: The formula for finding the angle between a
pair of vectors is $\cos\theta=\frac{\textbf {u}\cdot\textbf {v}}{|\textbf {u}||\textbf {v}|}$
Step 3: $\cos\theta=\frac{\langle 5,-3 \rangle\cdot\langle 3,5 \rangle}{|\langle 5,-3 \rangle||\langle 3,5 \rangle|}$
Step 4: $\cos\theta=\frac{5(3)-3(5)}{\sqrt (5^{2}+(-3)^{2})\cdot\sqrt (3^{2}+5^{2})}$
Step 5: $\cos\theta=\frac{15-15}{\sqrt (25+9)\cdot\sqrt (9+25)}$
Step 6: $\cos\theta=\frac{0}{\sqrt (34)\cdot\sqrt (34)}$
Step 7: $\cos\theta=0$
Step 8: $\theta=\cos^{-1}(0)$
Step 9: Solving using the inverse cos function on the calculator,
$\theta=\cos^{-1}(0)=90^{\circ}$
Since the angle between the vectors is $90^{\circ}$, the vectors are orthogonal.