Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 266: 107b



Work Step by Step

To find the value of $\theta$, we need to substitute the value of $x=2$ in the equation and solve; $\theta=\tan^{-1}(\frac{x}{x^{2}+2})$ $\theta=\tan^{-1}(\frac{2}{2^{2}+2})$ $\theta=\tan^{-1}(\frac{2}{4+2})$ $\theta=\tan^{-1}(\frac{2}{6})$ $\theta=\tan^{-1}(\frac{1}{3})$ $\theta=18.4\approx18^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.