Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Appendix A - Equations and Inequalities - Page 421: 73



Work Step by Step

Step 1: $-2x+8\leq16$ Step 2: Subtracting $8$ from both sides, $-2x+8-8\leq16-8$ Step 3: $-2x\leq8$ Step 4: Dividing both sides by -2 (this reverses the direction of the inequality symbol): $\frac{-2x}{-2} \geq \frac{8}{-2}$ Step 5: $x\geq-4$ According to the inequality, the interval includes $-4$ and all values greater than $-4$. Since $-4$ is part of the interval, a square bracket is used on its side. On the other hand, $\infty$ does not represent an actual number. Rather it is used to show that the interval includes all real numbers greater than -4. Therefore, a parenthesis is used on its side. Therefore, the interval notation for this inequality is written as $[-4,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.