Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 4 - Review - Review Exercises - Page 247: 6d

Answer

$y ̂=-3.84x+145.48$

Work Step by Step

$x ̅ =\frac{10+14+17+18+21}{5}=16$ $s_x=\sqrt {\frac{(10-16)^2+(14-16)^2+(17-16)^2+(18-16)^2+(21-16)^2}{5-1}}=4.183$ $y ̅=\frac{105+94+82+76+63}{5}=84$ $s_y=\sqrt {\frac{(105-84)^2+(94-84)^2+(82-84)^2+(76-84)^2+(63-84)^2}{5-1}}=16.202$ $r=\frac{Σ(\frac{x_i-x ̅}{s_x})(\frac{y_i-y ̅}{s_y})}{n-1}=\frac{(\frac{10-16}{4.183})(\frac{105-84}{16.202})+(\frac{14-16}{4.183})(\frac{94-84}{16.202})+(\frac{17-16}{4.183})(\frac{82-84}{16.202})+(\frac{18-16}{4.183})(\frac{76-84}{16.202})+(\frac{21-16}{4.183})(\frac{63-84}{16.202})}{5-1}=-0.992$ The least-squares regression line: $y ̂=b_1x+b_0$ $b_1=r\frac{s_y}{s_x}=-0.992\times\frac{16.202}{4.183}=-3.84231$ $b_0=y ̅-b_1x ̅ =84-(-3.84231)\times16=145.47696$ So: $y ̂=-3.84x+145.48$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.