Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 4 - Review - Review Exercises - Page 247: 10e

Answer

This observation is an outlier and it is also influential.

Work Step by Step

See the new scatter diagram below. Observe how far the new point is from the others. Let's find the new least-squares regression line: $x ̅ =\frac{20+39+27+29+26+47+35+38+9}{9}=30$ $s_x=\sqrt {\frac{(20-30)^2+(39-30)^2+(27-30)^2+(29-30)^2+(26-30)^2+(47-30)^2+(35-30)^2+(38-30)^2+(9-30)^2}{9-1}}=11.3248$ $y ̅=\frac{430+750+480+540+510+760+690+632+80}{9}=541.333$ $s_y=\sqrt {\frac{(430-541.333)^2+(750-541.333)^2+(480-541.333)^2+(540-541.333)^2+(510-541.333)^2+(760-541.333)^2+(690-541.333)^2+(632-541.333)^2+(80-541.333)^2}{9-1}}=209.657$ $r=\frac{Σ(\frac{x_i-x ̅}{s_x})(\frac{y_i-y ̅}{s_y})}{n-1}=\frac{(\frac{20-30}{11.3248})(\frac{430-541.333}{209.657})+(\frac{39-30}{11.3248})(\frac{750-541.333}{209.657})+(\frac{27-30}{11.3248})(\frac{480-541.333}{209.657})+(\frac{29-30}{11.3248})(\frac{540-541.333}{209.657})+(\frac{26-30}{11.3248})(\frac{510-541.333}{209.657})+(\frac{47-30}{11.3248})(\frac{760-541.333}{209.657})+(\frac{35-30}{11.3248})(\frac{690-541.333}{209.657})+(\frac{38-30}{11.3248})(\frac{632-541.333}{209.657})+(\frac{9-30}{11.3248})(\frac{80-541.333}{209.657})}{9-1}=0.957$ The least-squares regression line: $y ̂=b_1x+b_0$ $b_1=r\frac{s_y}{s_x}=0.957\times\frac{209.657}{11.3248}=17.717$ $b_0=y ̅-b_1x ̅ =541.333-17.717\times30=9.823$ So: $y ̂=17.717x+9.823$ We can conclude that this observation is also influetial because the new least-squares regression line changed substantially.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.