Answer
$p(x\gt8)=.011$
Work Step by Step
$q=1-p=1-.5=.5$
$p(x)=\begin{pmatrix} n \\ x \end{pmatrix}p^xq^{n-x}$
$p(x=10)=\begin{pmatrix} 10 \\ 10 \end{pmatrix}(.5)^{10}(.5)^{0}=\frac{10!}{10!(10-10)!}(.5)^{10}=\frac{10!}{10!}(.5)^{10}=(.5)^{10}$
$p(x=9)=\begin{pmatrix} 10 \\ 9 \end{pmatrix}(.5)^9(.5)^{10-9}=\frac{10!}{9!(10-9)!}(.5)^{10}=\frac{10(9!)}{9!(1!)}(.5)^{10}=10(.5)^{10}$
$p(x\gt8)=p(x=9)+p(x=10)=(.5)^{10}+10(.5)^{10}=11(.5)^{10}=.011$