Answer
No, see explanations.
Work Step by Step
Given $ \sigma=3.4, n=24, s=4.2$
a. State the hypotheses and identify the claim.
$H_o: \sigma=3.4$
$H_a: \sigma\ne 3.4$ (claim two tail test)
b. Find the critical value(s).
$\alpha/2=0.025, df=23, \chi^2_{left}=12.401, \chi^2_{right}=39.364$
c. Compute the test value.
$\chi^2=\frac{23\times4.2^2}{3.4^2}=35.1$
d. Make the decision.
The above test value is in the non-reject region and we fail to reject the null hypothesis.
e. Summarize the results.
At $\alpha=$0.05, the sample standard deviation is not different from what the editor hypothesized.