Answer
See explanation
Work Step by Step
Construct a frequency distribution using 8 classes (0-7).
To find the frequency, add up all of the data into each of its class limits.
To find the cumulative frequency, you take the frequency and add them up onto each other going down.
\[
\begin{array}{|c|c|c|}
\hline
\textbf{Class} & \textbf{Class} & \textbf{Frequency} \\
\textbf{limits} & \textbf{boundaries} & \\ \hline
0 & -0.5 - 0.5 & 2 \\ \hline
1 & 0.5 - 1.5 & 5 \\ \hline
2 & 1.5 - 2.5 & 24 \\ \hline
3 & 2.5 - 3.5 & 8 \\ \hline
4 & 3.5 - 4.5 & 6 \\ \hline
5 & 4.5 - 5.5 & 4 \\ \hline
6 & 5.5 - 6.5 & 0 \\ \hline
7 & 6.5 - 7.5 & 1 \\ \hline
& & 50 \\ \hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
& \textbf{Cumulative frequency} \\ \hline
\text{Less than }-0.5 & 0 \\ \hline
\text{Less than }0.5 & 2 \\ \hline
\text{Less than }1.5 & 7 \\ \hline
\text{Less than }2.5 & 31 \\ \hline
\text{Less than }3.5 & 39 \\ \hline
\text{Less than }4.5 & 45 \\ \hline
\text{Less than }5.5 & 49 \\ \hline
\text{Less than }6.5 & 49 \\ \hline
\text{Less than }7.5 & 50 \\ \hline
\end{array}
\]