#### Answer

$0.2971$

#### Work Step by Step

We know that $probability=\frac{number \ of \ good \ outcomes}{number\ of\ all\ outcomes}$ and by the inclusion-exclusion principle:$P(A \cup B)=P(A)+P(B)-P(A\cap B)$. A:refused
B:his/her age is at least 60. By checking the data:
$P(A)=\frac{156}{1205}$
$P(B)=\frac{251}{1205}$
$P(A\cap B)=\frac{49}{1205}$
Therefore the probability of the person refused or his/her age being at least 60: $P(A \cup B)=\frac{156}{1205}+\frac{251}{1205}-\frac{49}{1205}=\frac{358}{1205}\approx0.2971$