An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.5 Expected Values - Questions - Page 147: 27

Answer

a) $\color{blue}{0.5^{\large \frac{1}{\theta+1}}}$ b) $ \color{blue}{\frac{-1 + \sqrt{5}}{2}}$

Work Step by Step

From Def. 3.5.2 (p. 145), for a continuous random variable $Y$, the median value $m$ is such that $\displaystyle\int_{-\infty}^m f_Y(y)\ dy = 0.5$. a) $\begin{align*} \int_{-\infty}^m f_Y(y)\ dy &= \int_0^m (\theta+1)y^\theta\ dy,\quad m\in (0,1), \theta \gt 0 \\ &= \left. (\theta+1)\cdot\dfrac{y^{\theta+1}}{\theta+1}\ \right\vert_0^m \\ &= m^{\theta+1} - 0^{\theta+1} \\ \int_{-\infty}^m f_Y(y)\ dy &= m^{\theta+1}, \quad m\in (0,1), \theta \gt 0 \\ \end{align*}$ Thus, $\begin{align*} & \int_{-\infty}^m f_Y(y)\ dy = 0.5, \quad m\in (0,1), \theta \gt 0 \\ \\ \implies & m^{\theta+1} = 0.5 \\ \implies & \color{blue}{m = 0.5^{\large \frac{1}{\theta+1}}} \end{align*}$ b) $\begin{align*} \int_{-\infty}^m f_Y(y)\ dy &= \int_0^m \left(y+\frac{1}{2}\right)\ dy,\quad m\in (0,1)\\ &= \left[\ \frac{y^2}{2} + \frac{y}{2}\ \right]_0^m \\ &= \left(\ \frac{m^2}{2} + \frac{m}{2}\ \right) - \left(\ \frac{0^2}{2} + \frac{0}{2}\ \right) \\ \int_{-\infty}^m f_Y(y)\ dy &= \frac{m^2+m}{2}, \quad m\in (0,1) \\ \end{align*}$ Thus, $\begin{align*} & \int_{-\infty}^m f_Y(y)\ dy = 0.5, \quad m\in (0,1) \\ \implies & \frac{m^2+m}{2} = 0.5 \\ \implies & m^2+m = 1 \\ \implies & m^2+m-1=0 \\ \implies & m = \frac{-1 \pm \sqrt{1-4(1)(-1)}}{2(1)}, \qquad [\ \text{use the quadratic formula}\ ] \\ \implies & \color{blue}{m = \frac{-1 + \sqrt{5}}{2}}, \end{align*}$ where we have disregarded the negative root since $m\in (0,1).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.