An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.5 Expected Values - Questions - Page 147: 11

Answer

Apply the definition of the expectation of a random variable then evaluate the improper integral obtained. See details below.

Work Step by Step

$\begin{align*} E(Y) &= \int_\mathbb{R} y\cdot f_Y(y)\ dy \\ &= \int_{-\infty}^\infty y\cdot f_Y(y)\ dy \\ &= \int_0^\infty y\cdot\left(\lambda e^{-\lambda y}\right)\ dy \qquad \text{since}\ f_Y(y)=\lambda e^{-\lambda y},\ y\gt 0 \\ & \qquad\qquad \\ & \qquad\qquad \text{Integration by parts:} \\ & \qquad\qquad \begin{array}{c|c} u = y & dv = \lambda e^{-\lambda y}\ dy \\ \hline du = dy & v = -e^{-\lambda y} \end{array} \\ & \qquad\qquad \begin{array}{rcl} \displaystyle \int y\cdot\left(\lambda e^{-\lambda y}\right)\ dy &=& \displaystyle \int u\ dv \\ &=& \displaystyle uv - \int v\ du \\ &=& \displaystyle -ye^{-\lambda y} - \int -e^{-\lambda y}\ dy \\ \displaystyle\int y\cdot\left(\lambda e^{-\lambda y}\right)\ dy&=& \displaystyle -\frac{y}{e^{\lambda y}} + \frac{1}{\lambda} \int \lambda e^{-\lambda y} \end{array} \\ & \qquad\qquad \\ &= -\frac{y}{e^{\lambda y}}\biggr\vert_0^\infty + \frac{1}{\lambda} \underbrace{\int_0^\infty \lambda e^{-\lambda y}}_{\int_\mathbb{R}({\rm pdf\ of}\ Y)\ dy \;=\; 1} \\ &= \biggl( -\frac{\infty}{e^{\lambda \cdot \infty}} + \frac{0}{e^{\lambda\cdot 0}}\biggr) + \frac{1}{\lambda}(1) \\ &= \biggl(\underbrace{-\frac{\infty}{\infty}}_{\scriptsize\rm L'Hospital's\ case} + \frac{0}{1} \biggr) + \frac{1}{\lambda} \\ &= \lim_{t\ \to\ \infty} -\frac{1}{\lambda e^{\lambda t}} + 0 + \frac{1}{\lambda} \\ &= -\frac{1}{\lambda e^{\infty}} +0 + \frac{1}{\lambda} \\ &= -\frac{1}{\infty} -0 + \frac{1}{\lambda} \\ &= -0 + 0 + \frac{1}{\lambda} \\ \color{blue}{E(Y)}\ &\color{blue}{= \frac{1}{\lambda}} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.