Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Section 6.4 - Inverse Trigonometric Functions and Right Triangles - 6.4 Exercises - Page 506: 4

Answer

$\frac{12}{13}$

Work Step by Step

Assuming $\theta$ = $\cos^{-1} \frac{5}{13}$ , we get- $\cos\theta$ = $\frac{5}{13}$ From first Pythagorean identity- $\sin\theta$ = $\sqrt {1 - \cos^{2} \theta}$ = $\sqrt {1 - (\frac{5}{13})^{2}} $ = $\sqrt {1 - \frac{25}{169}} $ = $\sqrt { \frac{169 - 25}{169}} $ = $\sqrt { \frac{144}{169}} $ = $\frac{12}{13}$ i.e. $\sin\theta$ = $\frac{12}{13}$ i.e. $\sin(\cos^{-1}\frac{5}{13})$ = $\frac{12}{13}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.