Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Section 6.4 - Inverse Trigonometric Functions and Right Triangles - 6.4 Exercises - Page 506: 3

Answer

(a). $\frac{8}{10}$ $i.e.$ $\frac{4}{5}$ (b). $\frac{6}{10}$ $i.e.$ $\frac{3}{5}$ (c). $\frac{8}{6}$ $i.e.$ $\frac{4}{3}$

Work Step by Step

(a). We know that- $\sin\theta$ = $\frac{opp}{hypo}$ Therefore in given triangle, $\sin\theta$ = $\frac{8}{10}$ = $\frac{4}{5}$ Hence. $\theta$ = $\sin^{-1} \frac{8}{10}$ or $\sin^{-1} \frac{4}{5}$ (b). We know that- $\cos\theta$ = $\frac{adj}{hypo}$ Therefore in given triangle, $\cos\theta$ = $\frac{6}{10}$ = $\frac{3}{5}$ Hence. $\theta$ = $\cos^{-1} \frac{6}{10}$ or $\cos^{-1} \frac{3}{5}$ (b). We know that- $\tan\theta$ = $\frac{opp}{adj}$ Therefore in given triangle, $\tan\theta$ = $\frac{8}{6}$ = $\frac{4}{3}$ Hence. $\theta$ = $\tan^{-1} \frac{8}{6}$ or $\tan^{-1} \frac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.