Answer
$f(-2.2) \approx 0.653$
$f(\sqrt7) \approx 18.775$
$f() \approx 135.765$
Work Step by Step
$Use$ $a$ $calculator$ $to$ $find$ $the$ $indicated$ $values$ $of$ $the$ $exponential$ $function,$ $rounded$ $to$ $three$ $decimal$ $places:$
$f(x) = 3\times2^x; f(-2.2), f(\sqrt 7), f(5.5)$
a.) $f(x) = 3\times2^x; f(-2.2)$
Plug in -2.2 for x
$$f(-2.2) = 3\times2^{-2.2}$$
Use a calculator to evaluate
$$f(-2.2) = 0.6529129224720931$$
Round to 3 decimal places
$$f(-2.2) \approx 0.653$$
b.)$f(x) = 3\times2^x; f(\sqrt7)$
Plug in $\sqrt7$ for x
$$f(\sqrt7) = 3\times2^{\sqrt7}$$
Use a calculator to evaluate
$$f(\sqrt7) = 18.774646146124059$$
Round to 3 decimal places
$$f(\sqrt7) \approx 18.775$$
c.)$f(x) = 3\times2^x; f(5.5)$
Plug in 5.5 for x
$$f(5.5) = 3\times2^5.5$$
Use a calculator to evaluate
$$f(5.5) = 135.7645019878171247$$
Round to 3 decimal places
$$f() \approx 135.765$$