Answer
$A$ º $A = 1.1025$
$A$ º $A $ º $A = 1.157625$
$A$ º $A $ º $A $ º $A= 1.21550625$
These compositions represent the investments made after 2, 3, and 4 years, respectively.
$1.05^n \cdot x$, where $n$ is the number of copies of $A$
Work Step by Step
$A$ º $A = 1.05(1.05x)= 1.1025$
$A$ º $A $ º $A = 1.1025(1.05x) =1.157625$
$A$ º $A $ º $A $ º $A= 1.157625(1.05x)=1.21550625$
These compositions represent the investments made after a certain number of years because the investment plus the interest earned in a certain year becomes the initial investment for the next year.
$A$ º $A = 1.05^2 \cdot x$
$A$ º $A $ º $A = 1.05^3 \cdot x$
$A$ º $A $ º $A $ º $A= 1.05^4 \cdot x$
Thus, $1.05^n \cdot x$, where $n$ is the number of copies of $A$