Answer
(a) Respectively: $2$, $1.66$ and $1.48$.
(b) \begin{matrix}
R & R(x) \\
1 & 2 \\
10 & 1.66 \\
100 & 1.48 \\
\end{matrix}
(c) $-0.18$
Work Step by Step
(a) Substitute the values for $x$ into the function and use a calculator to find $R(x)$ in each case.
$$R(1) = \sqrt{\frac{13 + 7(1)^{0.4}}{1 + 4(1)^{0.4}}} = 2$$
$$R(10) = \sqrt{\frac{13 + 7(10)^{0.4}}{1 + 4(10)^{0.4}}} = 1.66$$
$$R(100) = \sqrt{\frac{13 + 7(100)^{0.4}}{1 + 4(100)^{0.4}}} = 1.48$$
(b)
Use the values calculated before to make a table of values.
\begin{matrix}
R & R(x) \\
1 & 2 \\
10 & 1.66 \\
100 & 1.48 \\
\end{matrix}
(c)
$R(100) - R(10) = 1.48 - 1.66 = -0.18$