Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.5 - Mathematical Induction - 12.5 Exercises - Page 878: 4

Answer

please see step-by-step

Work Step by Step

Principle of Mathematical Induction$:$ If both following conditions are satisfied, 1. $P(1)$ is true. 2. For any $k\in \mathbb{N}$, [$P(k)$ is true] $\Rightarrow$ [$P(k+1)$ is true]. then $P(n)$ is true for all $n\in \mathbb{N}$. ----------------- Let $P(n)$: $1+4+7+10+\displaystyle \cdots+(3n -2)=\frac{n(3n-1)}{2}$. 1. $P(1)$: $1=\displaystyle \frac{1[3(1)-1]}{2}=\frac{1\cdot 2}{2}$ is true. 2. Assume that $P(k)$ is true. $1+4+7+\displaystyle \cdots+(3k-2)=\frac{k(3k-1)}{2}\quad(*)$ (is $P(k+1)$ true?) Add the next, $(k+1)$th term of the LHS of (*) to both sides: $LHS= 1+4+7+10+\cdots+(3k-2)+[3(k+1)-2]$ $RHS=\displaystyle \frac{k(3k-1)}{2}+[3(k+1)-2]$ $= \displaystyle \frac{k(3k-1)}{2}+3k+1$ $= \displaystyle \frac{k(3k-1)}{2}+\frac{6k+2}{2}$ $=\displaystyle \frac{3k^{2}-k+6k+2}{2}$ $=\displaystyle \frac{3k^{2}+5k+2}{2}$ ... factor the numerator, $... $factors of 3(2)=6 that add to 5 are 2 and 3... ... $3k^{2}+5k+2=3k^{2}+3k+2k+2=3k(k+1)+2(k+1)=(k+1)(3k+2)$ $RHS= \displaystyle \frac{(k+1)(3k+2)}{2}$ which can be written as $=\displaystyle \frac{(k+1)[3(k+1)-1]}{2}$, which results in $P(k+1)$ being true. $(P(k)$ is true $\Rightarrow P(k+1)$ is true$)$ So by the Principle of Mathematical Induction, $P(n)$ is true for all $n\in \mathbb{N}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.