Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 11 - Section 11.3 - Hyperbolas - 11.3 Exercises - Page 806: 48

Answer

$\frac{x^2}{4}-\frac{y^2}{6}=1$

Work Step by Step

Foci: $(±c,0)=(±\sqrt {10},0)$ $c=\sqrt {10}$ $c^2=a^2+b^2$ $a^2+b^2=10$ Use the point $(4,\sqrt {18})$: Hyperbola with horizontal transverse axis: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ $\frac{16}{a^2}-\frac{18}{b^2}=1$ $\frac{16}{a^2}=\frac{18}{b^2}+1$ $\frac{16}{a^2}=\frac{18+b^2}{b^2}$ $\frac{a^2}{16}=\frac{b^2}{b^2+18}$ $a^2=\frac{16b^2}{b^2+18}$ $a^2+b^2=\frac{16b^2}{b^2+18}+b^2$ $10=\frac{16b^2}{b^2+18}+b^2~~$ (Multiply both sides by $b^2+18$) $10b^2+180=16b^2+b^4+18b^2$ $0=b^4+24b^2-180$ $0=(b^2+30)(b^2-6)$ $b^2+30=0$ has no real solution. $b^2-6=0$ $b^2=6$ $a^2+b^2=10$ $a^2=4$ Finally: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ $\frac{x^2}{4}-\frac{y^2}{6}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.