Answer
$f^{-1}(x)=\dfrac{2 x}{x-1}$
Work Step by Step
Let $f(x)=y \Rightarrow x=f^{-1}(y)$
$\Rightarrow \quad y=\frac{x}{x-2}$
$\Rightarrow \quad y(x-2)=x$
$\Rightarrow \quad x y-2 y=x$
$\Rightarrow x y-x=2 y$
$\Rightarrow \quad x(y-1)=2 y$
$\Rightarrow \quad x=\frac{2 y}{y-1}$
Replace $y$ with $x$ and $x$ with $y$ to obtain:
$y=\dfrac{2x}{x-1}$
Replace $y$ with $f^{-1}(x)$ to obtain:
$f^{-1}(x)=\dfrac{2 x}{x-1}$