Answer
$13$ units
Work Step by Step
We are given $P_{1}=(4,-7), P_{2}=(-1,5)$.
Distance $d$ between the two points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ is given by the formula:
$$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^2}$$
Use the formula above to obtain:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^2}$
$d=\sqrt{(-1-4)^{2}+(5-(-7))^{2}}$
$d=\sqrt{(-5)^{2}+(12)^{2}}$
$d=\sqrt{25+144}$
$d=\sqrt{169}$
$d=13$