Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 10 - Systems of Equations and Inequalities - Section 10.5 Partial Fraction Decomposition - 10.5 Assess Your Understanding - Page 788: 16

Answer

$\dfrac{\frac{1}{5}}{x+1}+\dfrac{\frac{-x}{5}+\frac{1}{5}}{x^2+4}$

Work Step by Step

We can notice from the given rational expression $\dfrac{A(x)}{B(x)}$ that $B(x)$ has only non-repeated irreducible quadratic factor. So, we will write the given rational expression into partial fraction form as: $$\displaystyle \frac{1}{(x+1)(x^2+4)}=\frac{A}{x+1}+\frac{Bx+C}{x^2+4} \quad \quad(1)$$ Now, write the RHS with a common denominator. \begin{align*}\frac{1}{(x+1)(x^2+4)}&=\frac{A(x^2+4)+(x+1)(Bx+C)}{(x+1)(x^2+4)}\\ \\\frac{1}{(x+1)(x^2+4)}&=\frac{Ax^2+4A+Bx^2 +Cx+Bx+C}{(x+1)(x^2+4)} \\\frac{1}{(x+1)(x^2+4)}&=\frac{Ax^2+Bx^2+Bx+Cx+4A+C}{(x+1)(x^2+4)} \end{align*} Next, equate the numerators to obtain: $$(A+B)x^2+(B+C)x+(4A+C)=1$$ Equate the coefficients of the polynomials on the LHS and RHS to obtain: $$A+B=0 \quad \quad\ (2) \\ B+C=0 \quad \quad (3) \\4A+C=1\quad \quad(4)$$ Equation $(2)$ yields: $A=-B$. Plug $A=-B$ into the Equation $(3)$ and then subtract equations $(3)$ from $(4)$ to solve for $A$. Thus, we have: \begin{align*}(4A+C)-(-A+C)&=1-0\\ 4A+C+A-C&=1\\ 5A&=1\\ A&=\frac{1}{5} \end{align*} Hence, $B=-A=-\dfrac{1}{5}$ Finally, plug $B=-\frac{1}{5}$ into Equation $(3)$ obtain: $$-\dfrac{1}{5}+C =0\implies C=\dfrac{1}{5}$$ Therefore, equation $(1)$ becomes: $$\dfrac{1}{(x+1)(x^2+4)}=\dfrac{\frac{1}{5}}{x+1}+\dfrac{\frac{-x}{5}+\frac{1}{5}}{x^2+4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.